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Abstract: Double asymmetric induction has been used to increase the diastereoselectivity of the dihydroqlation of the 
allylsilane +(II) wing dihydroquinidim p-chlorobenmate AS catalyst. 

Functionalised, chiral allylsilanes have considerable potential as intermediates for stereoselective organic 

synthesis as the silyl substituent can provide high levels of stereochemical control in the reactions at both 

‘flanking’ prochiral centres, e.g. (l)-(2)-(3). 1 We have been particularly interested in the oxidation of 

allylsilanes such as (1) and (2) with mera-chloroperbenzoic acid (mCPBA).* A natural extension of these 

investigations is the dihydroxylation of such allylsilanes using osmium tetroxide. This Letter reports our 

observations in this area. 

One of the aims of this work is the development of routes for the construction of the various 

stereoisomers of the ‘amino acid’ unit (4) of the antiviral, antileukaemic antibiotic baciphelacin (5).3 

Accordingly ester-allylsilanes corresponding to (1) and (2) in which R=ethyl have been used in this study. 
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The general strategy which was adopted for the proposed synthesis of units equivalent to (6) is shown in 

Scheme 1. The vinylsilane (7), an excellent substrate for Sharpless (epoxidation) kinetic resolution,‘t could be 

converted into either the syn- or anti- methylated allylsilane (8) by choice of routes and osmium tetroxide 

mediated dihydroxylation should provide the y-lactone (9). Conversion of the hydroxyl group into an azide 

would then produce the desired system (10). The y-lactone (10) is an attractive synthetic equivalent for (6) 

since the phenyldimethylsilyl group could be converted into the required hydroxyl group,6 and the azide 

should function as a precursor to the amine. 
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Scheme 1 

The dihydroxylation of chiral allylsilanes is known to be less selective than epoxidation (and other related 

reactions)7 and the immediate aim of this work was to investigate possible methods for increasing the 

diastereoselectivity of this step. The racemic anti- allyManes (11) and (12), prepared as shown in Scheme 2, 

were studied initially and it was found that the diastereoselectivity of the dihydroxylation could bc increased 

significantly simply by changing the cooxidant from N-methylmorpholine N-oxide (NMO) to ferricyanide.8 
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WMO=N-Methylmorpholine N-oxide; bCombined yield of separated (13)+(14); CNMO reactions used Me$O/H20 as 

solvent; d K3Fe(CN)6 reactions used Bu’oH/H20 as solvent. and were run in the presence of 3 equivalents of KzC03: 

eEstimated fromlH.nmr spectrum of the crude product. 

Scheme 2 

TO investigate the possibility of kinetic resolution of allylsilane (1 l), dihydroxylation of (I 1) was canjed 

out using the Sharpless asymmetric catalysts dihydrquinidine and dihydrquinine 4-chlorohenzoates.10 The 

results of the reaction using the dihydroquinidine catalyst are shown in Scheme 3. The results with the 

dihydquinine catalyst were similar except that the opposite sense of asymmetric induction was observed. 
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e.e. 53% e,e. 58% 

(11):(13):(14) = 42:42:16 

Scheme 3 
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These results suggested that a moderate amount of ‘double asymmetric induction’11 was occurring in 

these reactions, and it follows that a ‘matched pair’ of substrate and catalyst should produce somewhat higher 

levels of diastereoselectivity in the dihydroxylation of (11). This was shown to be the case by the catalysed 

reactions of +(l 1) (>95%e.e.)12 with the absolute configuration shown in Scheme 4. An interesting result 

was obtained with +(15) (e.e.>95%). In this case essentially no diastereoselectivity is observed in 

dihydroxylation without the asymmetric catalysts, and the facial selectivity of the dihydroxylation depends only 

on which asymmetric catalyst is used (Scheme 4). 
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Scheme 4 

The matched pair of +(ll) and the dihydroquinidine catalyst is that expected from the known facial 

selectivity of the reactions of these systems. In this case the catalyst favours attack on the face of the double 

bond n&-to the silicon (assuming that reaction occurs in a conformation with H-3 syn-planar with the double 

bond),l which corresponds to the intrinsic selectivity of (11). 

In order to achieve the synthesis of one diastereoisomer of the desired unit for the baciphelacin amino 

acid (inter aliu), replacement of the hydroxyl group of +( 13) with azide was investigated. After mesylation the 

displacement with sodium azide was found to be clean and high yielding, thereby providing (18) as a single 

diastereoisomer. 
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In conclusion we have demonstrated that it is possible to achieve relatively high diastereoselectivity in the 

dihydroxylation of a functionalised, chiral allylsilane, and that the lactone (13) can provide a synthetic 

equivalent for the amino acid portion of the antiviral antibiotic baciphelacin. 
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